
Expressing, Exploring, Communicating, Revising,1

and Refining Ideas2

Robert Hirschfeld #3

Software Architecture Group, Hasso Plattner Institute, University of Potsdam, Germany4

We use computers to understand phenomena. They are our tools to express, explore,5

communicate, revise, and refine our ideas. And they can help us simulate possible and6

impossible futures.7

For that, we like to alternate between concrete examples and abstract representations to8

advance our understanding of complex domains of interest to us. Working out meaningful9

examples and finding powerful abstractions in their support are not only part of a process10

but also a means to an end since those examples and abstractions are a manifestation of our11

knowledge about an area of interest.12

We welcome notations that allow us to express our intents directly to help improve our13

understanding and to communicate and collaborate with others. And while doing so, we14

refine not only our knowledge about the world but also the ways we would like to talk about15

it.16

Our tools help maintain our knowledge and offer ways to interact with it. They support17

our explorations of the concrete and abstract, provide access to anything of interest, and18

offer the right feedback at the right time. They allow us to express the same ideas using19

different notations for different points of view [16]. And they allow us to express different20

ideas using different notations that can coexist next to each other in complex, multifaceted21

domains.22

By allowing for imperfection and incompleteness, our tools are robust and malleable to23

help us make mistakes and learn from them. And as both our knowledge and the way we24

choose to represent it evolve, we also evolve our notations and tools.25

Substrates are the technology that enables and helps us achieve that.26

Substrates encourage Computational Thinking [4] and Programming as Theory Build-27

ing [10]. They allow for the creation of Personal Dynamic Media [8] and can be a step toward28

the vision of the Dynabook [9].29

Substrates accommodate the co-existence and symbiosis of concrete data, abstract code,30

and evolving processes and simulations around them. State, behavior, execution, and tools31

and interfaces become one (objects, actors).32

Substrates offer liveness and immediacy.33

Curated examples can help express the intent of abstractions, allowing us to approach34

them from different levels of confidence, depending on the context of our discourse.35

Substrates consist of small, simple kernels that together contribute to the experiences built36

upon them, adequately representing the intrinsic complexity of the domains of interest they37

support while reducing accidental complexity imposed by the infrastructure they provide.38

To remain useful, substrates need to evolve with our understanding of the world.39

The Software Architecture Group [15] is working toward such substrates and, more40

importantly, the possibilities they will enable for us.41

We are striving for better and different approaches to authoring and authoring environ-42

ments, with live and exploratory programming [13] being just one such approach, but the43

most promising and rewarding to us.44

© Robert Hirschfeld;
licensed under Creative Commons License CC-BY 4.0

1st Workshop on Substrates 2025.
Editors: Jonathan Edwards and Tomas Petricek and Robert Hirschfeld; Article No. 23; pp. 23:1–23:3

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:robert.hirschfeld@hpi.uni-potsdam.de
https://orcid.org/0000-0002-4249-6003
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

23:2 Expressing, Exploring, Communicating, Revising, and Refining Ideas

Among our systems and research prototypes that contribute to our goals are Sandblocks,45

Bablylonian Programming, and Vivide.46

Sandblocks is a system that allows its users to automatically generate structured editors47

for every language with a formal grammar available [1]. It allows a direct interaction with48

the deep structure of programs and their run-time representations and to some degree a49

freedom of notation [14, 2].50

Babylonian Programming is an approach to example-based live programming environments51

that enables programmers to use examples in larger systems, which span multiple modules [11].52

It unites the world of static and dynamic tools into one combined view that provides immediate53

access to all information of interest and available [12].54

Vivide is a platform for seamless integration of tools into one environment that provides55

views on static and dynamic program-related information and presents a system as a single56

unit [17]. It allows for low-effort, high-quality tool building and maintenance and treats57

dedicated, customized development tool support as part of the application domain.58

Most of our work is built on or extends Squeak/Smalltalk [5, 3] and Lively Kernel [7, 6],59

two of the substrates we are most interested in from a technological point of view, the60

programming culture they encourage, and the visions of the people that created them.61

References62

1 Tom Beckmann, Patrick Rein, Stefan Ramson, Joana Bergsiek, and Robert Hirschfeld. Struc-63

tured Editing for All: Deriving Usable Structured Editors from Grammars. In Proceedings of64

the 2023 CHI Conference on Human Factors in Computing Systems, pages 1–16, New York,65

NY, USA, 2023. Association for Computing Machinery. doi:10.1145/3544548.3580785.66

2 Tom Beckmann, Jan Reppien, Jens Lincke, and Robert Hirschfeld. Supporting Construction67

of Domain-Specific Representations in Textual Source Code. In Proceedings of the 3rd ACM68

SIGPLAN International Workshop on Programming Abstractions and Interactive Notations,69

Tools, and Environments (PAINT), pages 17–28, New York, NY, USA, 2024. Association for70

Computing Machinery. doi:10.1145/3689488.3689990.71

3 Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Implementation.72

Addison-Wesley, 1983. URL: https://dl.acm.org/doi/book/10.5555/273.73

4 Mark Guzdial, Alan C. Kay, Cathie Norris, and Elliot Soloway. Computational Thinking74

Should Just be Good Thinking. Communications of the ACM (CACM), 62(11):28–30, 2019.75

doi:10.1145/3363181.76

5 Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back to the Future:77

The Story of Squeak, A Practical Smalltalk Written in Itself. In Proceedings of the 12th78

ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and79

Applications (OOPSLA), pages 318–326. Association for Computing Machinery, 1997. doi:80

10.1145/263698.263754.81

6 Daniel Ingalls, Tim Felgentreff, Robert Hirschfeld, Robert Krahn, Jens Lincke, Marko Röder,82

Antero Taivalsaari, and Tommi Mikkonen. A World of Active Objects for Work and Play: The83

First Ten Years of Lively. In Proceedings of the ACM SIGPLAN International Symposium on84

New Ideas, New Paradigms, and Reflections on Programming and Software (Onward!), pages85

238–249. Association for Computing Machinery, 2016. doi:10.1145/2986012.2986029.86

7 Daniel Ingalls, Krzysztof Palacz, Stephen Uhler, Antero Taivalsaari, and Tommi Mikkonen.87

The Lively Kernel: A Self–supporting System on a Web Page. In Self-Sustaining Systems (S3),88

pages 31–50, Berlin, Heidelberg, 2008. Springer-Verlag. doi:10.1007/978-3-540-89275-5_2.89

8 Alan Kay and Adele Goldberg. Personal Dynamic Media. IEEE Computer, 10(3):31–41, 1977.90

doi:10.1109/C-M.1977.217672.91

https://doi.org/10.1145/3544548.3580785
https://doi.org/10.1145/3689488.3689990
https://dl.acm.org/doi/book/10.5555/273
https://doi.org/10.1145/3363181
https://doi.org/10.1145/263698.263754
https://doi.org/10.1145/263698.263754
https://doi.org/10.1145/263698.263754
https://doi.org/10.1145/2986012.2986029
https://doi.org/10.1007/978-3-540-89275-5_2
https://doi.org/10.1109/C-M.1977.217672

R. Hirschfeld 23:3

9 Alan C. Kay. A Personal Computer for Children of All Ages. In Proceedings of the ACM92

annual conference, Volume 1. Association for Computing Machinery, 1972. URL: https:93

//dl.acm.org/doi/10.1145/800193.1971922.94

10 Peter Naur. Programming as Theory Building. Microprocessing and Microprogramming,95

15(5):253–261, 1985. doi:10.1016/0165-6074(85)90032-8.96

11 David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke, and Robert Hirschfeld. Babylonian-97

style Programming: Design and Implementation of an Integration of Live Examples Into98

General-purpose Source Code. The Art, Science, and Engineering of Programming, 3(3):39,99

2019. doi:10.22152/programming-journal.org/2019/3/9.100

12 Patrick Rein, Christian Flach, Stefan Ramson, Eva Krebs, and Robert Hirschfeld. Broadening101

the View of Live Programmers. The Art, Science, and Engineering of Programming, 8(3):38,102

2024. doi:10.22152/programming-journal.org/2024/8/13.103

13 Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape. Ex-104

ploratory and Live, Programming and Coding – A Literature Study Comparing Perspec-105

tives on Liveness. The Art, Science, and Engineering of Programming, 3(1):33, 2019.106

doi:10.22152/programming-journal.org/2019/3/1.107

14 Charles Simonyi, Magnus Christerson, and Shane Clifford. Intentional Software. In Proceedings108

of the ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages,109

and Applications (OOPSLA), pages 451–464. Association for Computing Machinery, 2006.110

doi:10.1145/1167473.1167511.111

15 Software Architecture Group, Hasso Plattner Institute, University of Potsdam, Germany.112

URL: https://www.hpi.uni-potsdam.de/swa/people/.113

16 Susan Leigh Star and James R. Griesemer. Institutional Ecology, “Translations,” and Boundary114

Objects: Amateurs and Professionals in Berkeley’s Museum of Vertebrate Zoology, 1907–1939.115

Social Studies of Science, 19(3):387–420, 1989. URL: http://www.jstor.org/stable/285080.116

17 Marcel Taeumel, Bastian Steinert, and Robert Hirschfeld. The VIVIDE Programming En-117

vironment: Connecting Run-time Information With Programmers’ System Knowledge. In118

Proceedings of the ACM SIGPLAN International Symposium on New Ideas, New Paradigms,119

and Reflections on Programming and Software (Onward!), pages 117–126, New York, NY,120

USA, 2012. Association for Computing Machinery. doi:10.1145/2384592.2384604.121

Subst ra tes 2025

https://dl.acm.org/doi/10.1145/800193.1971922
https://dl.acm.org/doi/10.1145/800193.1971922
https://dl.acm.org/doi/10.1145/800193.1971922
https://doi.org/10.1016/0165-6074(85)90032-8
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://doi.org/10.22152/programming-journal.org/2024/8/13
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1145/1167473.1167511
https://www.hpi.uni-potsdam.de/swa/people/
http://www.jstor.org/stable/285080
https://doi.org/10.1145/2384592.2384604

*********************** PAPER 16 ***********************
AUTHORS: Robert Hirschfeld
TITLE: Expressing, Exploring, Communicating, Revising, and Refining Ideas

++++++++++ REVIEW 1 (Gilad Bracha) +++++++++
"We use computers to understand phenomena." Well put. Very much in line with the Scandinavian school of OO -
Beta etc., "concepts and phenomena". But we use computers for more than that: we use them to control things.
Examples include setting the temperature in our home, or guiding a car, drone or rocket to its destination; there are
many others.

That's my quibble. Keep up the good work.

