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We use computers to understand phenomena. They are our tools to express, explore,5

communicate, revise, and refine our ideas. And they can help us simulate possible and6

impossible futures.7

For that, we like to alternate between concrete examples and abstract representations to8

advance our understanding of complex domains of interest to us. Working out meaningful9

examples and finding powerful abstractions in their support are not only part of a process10

but also a means to an end since those examples and abstractions are a manifestation of our11

knowledge about an area of interest.12

We welcome notations that allow us to express our intents directly to help improve our13

understanding and to communicate and collaborate with others. And while doing so, we14

refine not only our knowledge about the world but also the ways we would like to talk about15

it.16

Our tools help maintain our knowledge and offer ways to interact with it. They support17

our explorations of the concrete and abstract, provide access to anything of interest, and18

offer the right feedback at the right time. They allow us to express the same ideas using19

different notations for different points of view [16]. And they allow us to express different20

ideas using different notations that can coexist next to each other in complex, multifaceted21

domains.22

By allowing for imperfection and incompleteness, our tools are robust and malleable to23

help us make mistakes and learn from them. And as both our knowledge and the way we24

choose to represent it evolve, we also evolve our notations and tools.25

Substrates are the technology that enables and helps us achieve that.26

Substrates encourage Computational Thinking [4] and Programming as Theory Build-27

ing [10]. They allow for the creation of Personal Dynamic Media [8] and can be a step toward28

the vision of the Dynabook [9].29

Substrates accommodate the co-existence and symbiosis of concrete data, abstract code,30

and evolving processes and simulations around them. State, behavior, execution, and tools31

and interfaces become one (objects, actors).32

Substrates offer liveness and immediacy.33

Curated examples can help express the intent of abstractions, allowing us to approach34

them from different levels of confidence, depending on the context of our discourse.35

Substrates consist of small, simple kernels that together contribute to the experiences built36

upon them, adequately representing the intrinsic complexity of the domains of interest they37

support while reducing accidental complexity imposed by the infrastructure they provide.38

To remain useful, substrates need to evolve with our understanding of the world.39

The Software Architecture Group [15] is working toward such substrates and, more40

importantly, the possibilities they will enable for us.41

We are striving for better and different approaches to authoring and authoring environ-42

ments, with live and exploratory programming [13] being just one such approach, but the43

most promising and rewarding to us.44
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Among our systems and research prototypes that contribute to our goals are Sandblocks,45

Bablylonian Programming, and Vivide.46

Sandblocks is a system that allows its users to automatically generate structured editors47

for every language with a formal grammar available [1]. It allows a direct interaction with48

the deep structure of programs and their run-time representations and to some degree a49

freedom of notation [14, 2].50

Babylonian Programming is an approach to example-based live programming environments51

that enables programmers to use examples in larger systems, which span multiple modules [11].52

It unites the world of static and dynamic tools into one combined view that provides immediate53

access to all information of interest and available [12].54

Vivide is a platform for seamless integration of tools into one environment that provides55

views on static and dynamic program-related information and presents a system as a single56

unit [17]. It allows for low-effort, high-quality tool building and maintenance and treats57

dedicated, customized development tool support as part of the application domain.58

Most of our work is built on or extends Squeak/Smalltalk [5, 3] and Lively Kernel [7, 6],59

two of the substrates we are most interested in from a technological point of view, the60

programming culture they encourage, and the visions of the people that created them.61
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++++++++++ REVIEW 1 (Gilad Bracha) +++++++++ 
"We use computers to understand phenomena." Well put. Very much in line with the Scandinavian school of OO - 
Beta etc., "concepts and phenomena". But we use computers for more than that: we use them to control things. 
Examples include setting the temperature in our home, or guiding a car, drone or rocket to its destination; there are 
many others.  
 
That's my quibble. Keep up the good work. 

 


